Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.932
Filtrar
1.
Nat Commun ; 15(1): 3333, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637533

RESUMO

Genetic variation in human populations can result in the misfolding and aggregation of proteins, giving rise to systemic and neurodegenerative diseases that require management by proteostasis. Here, we define the role of GRP94, the endoplasmic reticulum Hsp90 chaperone paralog, in managing alpha-1-antitrypsin deficiency on a residue-by-residue basis using Gaussian process regression-based machine learning to profile the spatial covariance relationships that dictate protein folding arising from sequence variants in the population. Covariance analysis suggests a role for the ATPase activity of GRP94 in controlling the N- to C-terminal cooperative folding of alpha-1-antitrypsin responsible for the correction of liver aggregation and lung-disease phenotypes of alpha-1-antitrypsin deficiency. Gaussian process-based spatial covariance profiling provides a standard model built on covariant principles to evaluate the role of proteostasis components in guiding information flow from genome to proteome in response to genetic variation, potentially allowing us to intervene in the onset and progression of complex multi-system human diseases.


Assuntos
Dobramento de Proteína , Deficiência de alfa 1-Antitripsina , Humanos , Chaperonas Moleculares/metabolismo , Proteostase , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Deficiência de alfa 1-Antitripsina/genética , Variação Genética
2.
JMIR Res Protoc ; 13: e54026, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669061

RESUMO

BACKGROUND: Preeclampsia (PE) is one of the most common hypertensive diseases, affecting 2%-8% of all pregnancies. The high maternal and fetal mortality rates of PE are due to a lack of early identification of affected pregnant women that would have led to closer monitoring and care. Recent data suggest that misfolded proteins might be a promising biomarker for PE prediction, which can be detected in urine samples of pregnant women according to their congophilia (aggregated) characteristic. OBJECTIVE: The main purpose of this trial is to evaluate the value of the urine congophilia-based detection of misfolded proteins for the imminent prediction of PE in women presenting with suspected PE. The secondary objectives are to demonstrate that the presence of urine misfolded proteins correlates with PE-related maternal or neonatal adverse outcomes, and to establish an accurate PE prediction model by combining misfolded proteins with multiple indicators. METHODS: At least 300 pregnant women with clinical suspicion of PE will be enrolled in this prospective cohort study. Participants should meet the following inclusion criteria in addition to a suspicion of PE: ≥18 years old, gestational week between 20+0 and 33+6, and single pregnancy. Consecutive urine samples will be collected, blinded, and tested for misfolded proteins and other PE-related biomarkers at enrollment and at 4 follow-up visits. Clinical assessments of PE status and related complications for all participants will be performed at regular intervals using strict diagnostic criteria. Investigators and participants will remain blinded to the results. Follow-up will be performed until 42 days postpartum. Data from medical records, including maternal and fetal outcomes, will be collected. The performance of urine misfolded proteins alone and combined with other biomarkers or clinical variables for the prediction of PE will be statistically analyzed. RESULTS: Enrollment started in July 2023 and was still open upon manuscript submission. As of March 2024, a total of 251 eligible women have been enrolled in the study and enrollment is expected to continue until August 2024. Results analysis is scheduled to start after all participants reach the follow-up endpoint and complete clinical data are collected. CONCLUSIONS: Upon completion of the study, we expect to derive an accurate PE prediction model, which will allow for proactive management of pregnant women with clinical suspicion of PE and possibly reduce the associated adverse pregnancy outcomes. The additional prognostic value of misfolded proteins is also expected to be confirmed. TRIAL REGISTRATION: Chinese Clinical Trials Registry ChiCTR2300074878; https://www.chictr.org.cn/showproj.html?proj=202096. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/54026.


Assuntos
Biomarcadores , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Pré-Eclâmpsia/urina , Pré-Eclâmpsia/diagnóstico , Estudos Prospectivos , Biomarcadores/urina , Adulto , Dobramento de Proteína , Valor Preditivo dos Testes
3.
Anal Bioanal Chem ; 416(12): 3019-3032, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38573344

RESUMO

Inclusion bodies (IBs) are protein aggregates formed as a result of overexpression of recombinant protein in E. coli. The formation of IBs is a valuable strategy of recombinant protein production despite the need for additional processing steps, i.e., isolation, solubilization and refolding. Industrial process development of protein refolding is a labor-intensive task based largely on empirical approaches rather than knowledge-driven strategies. A prerequisite for knowledge-driven process development is a reliable monitoring strategy. This work explores the potential of intrinsic tryptophan and tyrosine fluorescence for real-time and in situ monitoring of protein refolding. In contrast to commonly established process analytical technology (PAT), this technique showed high sensitivity with reproducible measurements for protein concentrations down to 0.01 g L - 1 . The change of protein conformation during refolding is reflected as a shift in the position of the maxima of the tryptophan and tyrosine fluorescence spectra as well as change in the signal intensity. The shift in the peak position, expressed as average emission wavelength of a spectrum, was correlated to the amount of folding intermediates whereas the intensity integral correlates to the extent of aggregation. These correlations were implemented as an observation function into a mechanistic model. The versatility and transferability of the technique were demonstrated on the refolding of three different proteins with varying structural complexity. The technique was also successfully applied to detect the effect of additives and process mode on the refolding process efficiency. Thus, the methodology presented poses a generic and reliable PAT tool enabling real-time process monitoring of protein refolding.


Assuntos
Corpos de Inclusão , Redobramento de Proteína , Espectrometria de Fluorescência , Corpos de Inclusão/química , Corpos de Inclusão/metabolismo , Espectrometria de Fluorescência/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Triptofano/química , Escherichia coli/metabolismo , Escherichia coli/química , Tirosina/química , Fluorescência , Dobramento de Proteína
4.
BMC Microbiol ; 24(1): 108, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566014

RESUMO

BACKGROUND: Staphylococcus aureus secretes a variety of proteins including virulence factors that cause diseases. PrsA, encoded by many Gram-positive bacteria, is a membrane-anchored lipoprotein that functions as a foldase to assist in post-translocational folding and helps maintain the stability of secreted proteins. Our earlier proteomic studies found that PrsA is required for the secretion of protein A, an immunoglobulin-binding protein that contributes to host immune evasion. This study aims to investigate how PrsA influences protein A secretion. RESULTS: We found that in comparison with the parental strain HG001, the prsA-deletion mutant HG001ΔprsA secreted less protein A. Deleting prsA also decreased the stability of exported protein A. Pulldown assays indicated that PrsA interacts with protein A in vivo. The domains in PrsA that interact with protein A are mapped to both the N- and C-terminal regions (NC domains). Additionally, the NC domains are essential for promoting PrsA dimerization. Furthermore, an immunoglobulin-binding assay revealed that, compared to the parental strain HG001, fewer immunoglobulins bound to the surface of the mutant strain HG001ΔprsA. CONCLUSIONS: This study demonstrates that PrsA is critical for the folding and secretion of protein A. The information derived from this study provides a better understanding of virulent protein export pathways that are crucial to the pathogenicity of S. aureus.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Proteínas de Bactérias/metabolismo , Proteína Estafilocócica A , Dobramento de Proteína , Proteínas de Membrana/metabolismo , Proteômica , Infecções Estafilocócicas/microbiologia , Imunoglobulinas/metabolismo
5.
PLoS Biol ; 22(4): e3002560, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574172

RESUMO

In all domains of life, Hsp70 chaperones preserve protein homeostasis by promoting protein folding and degradation and preventing protein aggregation. We now report that the Hsp70 from the bacterial pathogen Salmonella enterica serovar Typhimurium-termed DnaK-independently reduces protein synthesis in vitro and in S. Typhimurium facing cytoplasmic Mg2+ starvation, a condition encountered during infection. This reduction reflects a 3-fold increase in ribosome association with DnaK and a 30-fold decrease in ribosome association with trigger factor, the chaperone normally associated with translating ribosomes. Surprisingly, this reduction does not involve J-domain cochaperones, unlike previously known functions of DnaK. Removing the 74 C-terminal amino acids of the 638-residue long DnaK impeded DnaK association with ribosomes and reduction of protein synthesis, rendering S. Typhimurium defective in protein homeostasis during cytoplasmic Mg2+ starvation. DnaK-dependent reduction in protein synthesis is critical for survival against Mg2+ starvation because inhibiting protein synthesis in a dnaK-independent manner overcame the 10,000-fold loss in viability resulting from DnaK truncation. Our results indicate that DnaK protects bacteria from infection-relevant stresses by coordinating protein synthesis with protein folding capacity.


Assuntos
Proteínas de Escherichia coli , Magnésio , Magnésio/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Bactérias/metabolismo , Salmonella
6.
Proc Natl Acad Sci U S A ; 121(18): e2316408121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657047

RESUMO

Intrinsically disordered proteins (IDPs) that lie close to the empirical boundary separating IDPs and folded proteins in Uversky's charge-hydropathy plot may behave as "marginal IDPs" and sensitively switch conformation upon changes in environment (temperature, crowding, and charge screening), sequence, or both. In our search for such a marginal IDP, we selected Huntingtin-interacting protein K (HYPK) near that boundary as a candidate; PKIα, also near that boundary, has lower secondary structure propensity; and Crk1, just across the boundary on the folded side, has higher secondary structure propensity. We used a qualitative Förster resonance energy transfer-based assay together with circular dichroism to simultaneously probe global and local conformation. HYPK shows several unique features indicating marginality: a cooperative transition in end-to-end distance with temperature, like Crk1 and folded proteins, but unlike PKIα; enhanced secondary structure upon crowding, in contrast to Crk1 and PKIα; and a cross-over from salt-induced expansion to compaction at high temperature, likely due to a structure-to-disorder transition not seen in Crk1 and PKIα. We then tested HYPK's sensitivity to charge patterning by designing charge-flipped variants including two specific sequences with identical amino acid composition that markedly differ in their predicted size and response to salt. The experimentally observed trends, also including mutants of PKIα, verify the predictions from sequence charge decoration metrics. Marginal proteins like HYPK show features of both folded and disordered proteins that make them sensitive to physicochemical perturbations and structural control by charge patterning.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Dobramento de Proteína , Dicroísmo Circular , Estrutura Secundária de Proteína , Humanos , Transferência Ressonante de Energia de Fluorescência , Temperatura , Conformação Proteica
7.
Biochem Soc Trans ; 52(2): 719-731, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38563485

RESUMO

The aggregation of proteins into amyloid-like fibrils is seen in many neurodegenerative diseases. Recent years have seen much progress in our understanding of these misfolded protein inclusions, thanks to advances in techniques such as solid-state nuclear magnetic resonance (ssNMR) spectroscopy and cryogenic electron microscopy (cryo-EM). However, multiple repeat-expansion-related disorders have presented special challenges to structural elucidation. This review discusses the special role of ssNMR analysis in the study of protein aggregates associated with CAG repeat expansion disorders. In these diseases, the misfolding and aggregation affect mutant proteins with expanded polyglutamine segments. The most common disorder, Huntington's disease (HD), is connected to the mutation of the huntingtin protein. Since the discovery of the genetic causes for HD in the 1990s, steady progress in our understanding of the role of protein aggregation has depended on the integrative and interdisciplinary use of multiple types of structural techniques. The heterogeneous and dynamic features of polyQ protein fibrils, and in particular those formed by huntingtin N-terminal fragments, have made these aggregates into challenging targets for structural analysis. ssNMR has offered unique insights into many aspects of these amyloid-like aggregates. These include the atomic-level structure of the polyglutamine core, but also measurements of dynamics and solvent accessibility of the non-core flanking domains of these fibrils' fuzzy coats. The obtained structural insights shed new light on pathogenic mechanisms behind this and other protein misfolding diseases.


Assuntos
Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Humanos , Amiloide/química , Amiloide/metabolismo , Agregados Proteicos , Doença de Huntington/metabolismo , Doença de Huntington/genética , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Dobramento de Proteína , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos
8.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612616

RESUMO

Niemann-Pick Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 150,000 live births, classified within lysosomal storage diseases (LSDs). The abnormal accumulation of unesterified cholesterol characterizes the pathophysiology of NPC. This phenomenon is not unique to NPC, as analogous accumulations have also been observed in Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. Interestingly, disturbances in the folding of the mutant protein NPC1 I1061T are accompanied by the aggregation of proteins such as hyperphosphorylated tau, α-synuclein, TDP-43, and ß-amyloid peptide. These accumulations suggest potential disruptions in proteostasis, a regulatory process encompassing four principal mechanisms: synthesis, folding, maintenance of folding, and protein degradation. The dysregulation of these processes leads to excessive accumulation of abnormal proteins that impair cell function and trigger cytotoxicity. This comprehensive review delineates reported alterations across proteostasis mechanisms in NPC, encompassing changes in processes from synthesis to degradation. Additionally, it discusses therapeutic interventions targeting pharmacological facets of proteostasis in NPC. Noteworthy among these interventions is valproic acid, a histone deacetylase inhibitor (HDACi) that modulates acetylation during NPC1 synthesis. In addition, various therapeutic options addressing protein folding modulation, such as abiraterone acetate, DHBP, calnexin, and arimoclomol, are examined. Additionally, treatments impeding NPC1 degradation, exemplified by bortezomib and MG132, are explored as potential strategies. This review consolidates current knowledge on proteostasis dysregulation in NPC and underscores the therapeutic landscape targeting diverse facets of this intricate process.


Assuntos
Doenças por Armazenamento dos Lisossomos , Doença de Niemann-Pick Tipo C , Humanos , Proteostase , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Dobramento de Proteína , Proteólise
9.
J Phys Chem B ; 128(16): 3856-3869, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38606880

RESUMO

We have studied in silico the effect of proline, a model cosolvent, on local and global friction coefficients in (un)folding of several typical alanine-based α-helical peptides. Local friction is related to dwell times of a single, ensemble-averaged hydrogen bond (HB) within each peptide. Global friction is related to energy dissipated in a series of configurational changes of each peptide experienced by increasing the number of HBs during folding. Both of these approaches are important in relation to future atomic force microscopic-based measurements of internal friction via force-clamp single-molecule force spectroscopy. Molecular dynamics (MD) simulations for six peptides, namely, ALA5, ALA8, ALA15, ALA21, (AAQAA)3, and H2N-GN(AAQAA)2G-COONH2, have been conducted at 2 and 5 M proline solutions in water. Using previously obtained MD data for these peptides in pure water as well as upgraded theoretical models, we obtained variations of local and global internal friction coefficients as a function of solution viscosity. The results showed the substantial role of proline in stabilizing the folded state and slowing the overall folding dynamics. Consequently, larger friction coefficients were obtained at larger viscosities. The local and global internal friction, i.e., respective, friction coefficients approximated to zero viscosity, was also obtained. The evolution of friction coefficients with viscosity was weakly dependent on the number of concurrent folding pathways but was rather dominated by a stabilizing effect of proline on the folded states. Obtained values of local and global internal friction showed qualitatively similar results and a clear dependency on the structure of the studied peptide.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Prolina , Dobramento de Proteína , Prolina/química , Peptídeos/química , Conformação Proteica em alfa-Hélice , Alanina/química , Ligação de Hidrogênio , Fricção
10.
Protein Sci ; 33(5): e4986, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38607226

RESUMO

Despite the generally accepted role of the hydrophobic effect as the driving force for folding, many intrinsically disordered proteins (IDPs), including those with hydrophobic content typical of foldable proteins, behave nearly as self-avoiding random walks (SARWs) under physiological conditions. Here, we tested how temperature and ionic conditions influence the dimensions of the N-terminal domain of pertactin (PNt), an IDP with an amino acid composition typical of folded proteins. While PNt contracts somewhat with temperature, it nevertheless remains expanded over 10-58°C, with a Flory exponent, ν, >0.50. Both low and high ionic strength also produce contraction in PNt, but this contraction is mitigated by reducing charge segregation. With 46% glycine and low hydrophobicity, the reduced form of snow flea anti-freeze protein (red-sfAFP) is unaffected by temperature and ionic strength and persists as a near-SARW, ν ~ 0.54, arguing that the thermal contraction of PNt is due to stronger interactions between hydrophobic side chains. Additionally, red-sfAFP is a proxy for the polypeptide backbone, which has been thought to collapse in water. Increasing the glycine segregation in red-sfAFP had minimal effect on ν. Water remained a good solvent even with 21 consecutive glycine residues (ν > 0.5), and red-sfAFP variants lacked stable backbone hydrogen bonds according to hydrogen exchange. Similarly, changing glycine segregation has little impact on ν in other glycine-rich proteins. These findings underscore the generality that many disordered states can be expanded and unstructured, and that the hydrophobic effect alone is insufficient to drive significant chain collapse for typical protein sequences.


Assuntos
Proteínas Intrinsicamente Desordenadas , Dobramento de Proteína , Água/química , Cloreto de Sódio , Glicina/química , Interações Hidrofóbicas e Hidrofílicas
11.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38597156

RESUMO

De novo genes emerge from previously noncoding stretches of the genome. Their encoded de novo proteins are generally expected to be similar to random sequences and, accordingly, with no stable tertiary fold and high predicted disorder. However, structural properties of de novo proteins and whether they differ during the stages of emergence and fixation have not been studied in depth and rely heavily on predictions. Here we generated a library of short human putative de novo proteins of varying lengths and ages and sorted the candidates according to their structural compactness and disorder propensity. Using Förster resonance energy transfer combined with Fluorescence-activated cell sorting, we were able to screen the library for most compact protein structures, as well as most elongated and flexible structures. We find that compact de novo proteins are on average slightly shorter and contain lower predicted disorder than less compact ones. The predicted structures for most and least compact de novo proteins correspond to expectations in that they contain more secondary structure content or higher disorder content, respectively. Our experiments indicate that older de novo proteins have higher compactness and structural propensity compared with young ones. We discuss possible evolutionary scenarios and their implications underlying the age-dependencies of compactness and structural content of putative de novo proteins.


Assuntos
Dobramento de Proteína , Proteínas , Humanos , Proteínas/genética , Estrutura Secundária de Proteína , Biblioteca Gênica
12.
Biochem Soc Trans ; 52(2): 761-771, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38600027

RESUMO

Recent developments in atomic force microscopy (AFM) image analysis have made three-dimensional (3D) structural reconstruction of individual particles observed on 2D AFM height images a reality. Here, we review the emerging contact point reconstruction AFM (CPR-AFM) methodology and its application in 3D reconstruction of individual helical amyloid filaments in the context of the challenges presented by the structural analysis of highly polymorphous and heterogeneous amyloid protein structures. How individual particle-level structural analysis can contribute to resolving the amyloid polymorph structure-function relationships, the environmental triggers leading to protein misfolding and aggregation into amyloid species, the influences by the conditions or minor fluctuations in the initial monomeric protein structure on the speed of amyloid fibril formation, and the extent of the different types of amyloid species that can be formed, are discussed. Future perspectives in the capabilities of AFM-based 3D structural reconstruction methodology exploiting synergies with other recent AFM technology advances are also discussed to highlight the potential of AFM as an emergent general, accessible and multimodal structural biology tool for the analysis of individual biomolecules.


Assuntos
Amiloide , Imageamento Tridimensional , Microscopia de Força Atômica , Microscopia de Força Atômica/métodos , Imageamento Tridimensional/métodos , Humanos , Amiloide/química , Amiloide/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Conformação Proteica , Dobramento de Proteína
13.
J Chem Inf Model ; 64(8): 3350-3359, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38566451

RESUMO

The B domain of protein A (BdpA), a small three-helix bundle, folds on a time scale of a few microseconds with heterogeneous native and unfolded states. It is widely used as a model for understanding protein folding mechanisms. In this work, we use structure-based models (SBMs) and atomistic simulations to comprehensively investigate how BdpA folding is associated with the formation of its secondary structure. The energy landscape visualization method (ELViM) was used to characterize the pathways that connect the folded and unfolded states of BdpA as well as the sets of structures displaying specific ellipticity patterns. We show that the native state conformational diversity is due mainly to the conformational variability of helix I. Helices I, II, and III occur in a weakly correlated manner, with Spearman's rank correlation coefficients of 0.1539 (I and II), 0.1259 (I and III), and 0.2561 (II and III). These results, therefore, suggest the highest cooperativity between helices II and III. Our results allow the clustering of partially folded structures of folding of the B domain of protein A on the basis of its secondary structure, paving the way to an understanding of environmental factors in the relative stability of the basins of the folding ensemble, which are illustrated by the structural dependency of the protein hydration structures, as computed with minimum-distance distribution functions.


Assuntos
Simulação de Dinâmica Molecular , Domínios Proteicos , Dobramento de Proteína , Proteína Estafilocócica A , Água , Água/química , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo , Conformação Proteica em alfa-Hélice , Modelos Moleculares , Termodinâmica
14.
Q Rev Biophys ; 57: e4, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38597675

RESUMO

Solving the mechanism of a chemical reaction requires determining the structures of all the ground states on the pathway and the elusive transition states linking them. 2024 is the centenary of Brønsted's landmark paper that introduced the ß-value and structure-activity studies as the only experimental means to infer the structures of transition states. It involves making systematic small changes in the covalent structure of the reactants and analysing changes in activation and equilibrium-free energies. Protein engineering was introduced for an analogous procedure, Φ-value analysis, to analyse the noncovalent interactions in proteins central to biological chemistry. The methodology was developed first by analysing noncovalent interactions in transition states in enzyme catalysis. The mature procedure was then applied to study transition states in the pathway of protein folding - 'part (b) of the protein folding problem'. This review describes the development of Φ-value analysis of transition states and compares and contrasts the interpretation of ß- and Φ-values and their limitations. Φ-analysis afforded the first description of transition states in protein folding at the level of individual residues. It revealed the nucleation-condensation folding mechanism of protein domains with the transition state as an expanded, distorted native structure, containing little fully formed secondary structure but many weak tertiary interactions. A spectrum of transition states with various degrees of structural polarisation was then uncovered that spanned from nucleation-condensation to the framework mechanism of fully formed secondary structure. Φ-analysis revealed how movement of the expanded transition state on an energy landscape accommodates the transition from framework to nucleation-condensation mechanisms with a malleability of structure as a unifying feature of folding mechanisms. Such movement follows the rubric of analysis of classical covalent chemical mechanisms that began with Brønsted. Φ-values are used to benchmark computer simulation, and Φ and simulation combine to describe folding pathways at atomic resolution.


Assuntos
Dobramento de Proteína , Proteínas , Simulação por Computador , Proteínas/química , Engenharia de Proteínas , Biologia , Cinética , Termodinâmica
15.
Phys Rev Lett ; 132(13): 138402, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613272

RESUMO

Protein folding is a fundamental process critical to cellular function and human health, but it remains a grand challenge in biophysics. Hydrodynamic interaction (HI) plays a vital role in the self-organization of soft and biological materials, yet its role in protein folding is not fully understood despite folding occurring in a fluid environment. Here, we use the fluid particle dynamics method to investigate many-body hydrodynamic couplings between amino acid residues and fluid motion in the folding kinetics of a coarse-grained four-α-helices bundle protein. Our results reveal that HI helps select fast folding pathways to the native state without being kinetically trapped, significantly speeding up the folding kinetics compared to its absence. First, the directional flow along the protein backbone expedites protein collapse. Then, the incompressibility-induced squeezing flow effects retard the accumulation of non-native hydrophobic contacts, thus preventing the protein from being trapped in local energy minima during the conformational search of the native structure. We also find that the significance of HI in folding kinetics depends on temperature, with a pronounced effect under biologically relevant conditions. Our findings suggest that HI, particularly the short-range squeezing effect, may be crucial in avoiding protein misfolding.


Assuntos
Hidrodinâmica , Dobramento de Proteína , Humanos , Aminoácidos , Biofísica , Cinética
16.
Nat Commun ; 15(1): 2112, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459071

RESUMO

Prion diseases are a group of rapidly progressing neurodegenerative disorders caused by the misfolding of the endogenous prion protein (PrPC) into a pathogenic form (PrPSc). This process, despite being the central event underlying these disorders, remains largely unknown at a molecular level, precluding the prediction of new potential outbreaks or interspecies transmission incidents. In this work, we present a method to generate bona fide recombinant prions de novo, allowing a comprehensive analysis of protein misfolding across a wide range of prion proteins from mammalian species. We study more than 380 different prion proteins from mammals and classify them according to their spontaneous misfolding propensity and their conformational variability. This study aims to address fundamental questions in the prion research field such as defining infectivity determinants, interspecies transmission barriers or the structural influence of specific amino acids and provide invaluable information for future diagnosis and therapy applications.


Assuntos
Doenças Priônicas , Príons , Animais , Príons/metabolismo , Proteínas Priônicas/genética , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Mamíferos/metabolismo , Dobramento de Proteína
17.
J Zhejiang Univ Sci B ; 25(3): 212-232, 2024 Mar 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38453636

RESUMO

The endoplasmic reticulum is a key site for protein production and quality control. More than one-third of proteins are synthesized and folded into the correct three-dimensional conformation in the endoplasmic reticulum. However, during protein folding, unfolded and/or misfolded proteins are prone to occur, which may lead to endoplasmic reticulum stress. Organisms can monitor the quality of the proteins produced by endoplasmic reticulum quality control (ERQC) and endoplasmic reticulum-associated degradation (ERAD), which maintain endoplasmic reticulum protein homeostasis by degrading abnormally folded proteins. The underlying mechanisms of protein folding and ERAD in mammals have not yet been fully explored. Therefore, this paper reviews the process and function of protein folding and ERAD in mammalian cells, in order to help clinicians better understand the mechanism of ERAD and to provide a scientific reference for the treatment of diseases caused by abnormal ERAD.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Dobramento de Proteína , Animais , Proteínas , Estresse do Retículo Endoplasmático , Mamíferos/metabolismo
18.
JAMA ; 331(9): 778-791, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441582

RESUMO

Importance: Systemic amyloidosis from transthyretin (ATTR) protein is the most common type of amyloidosis that causes cardiomyopathy. Observations: Transthyretin (TTR) protein transports thyroxine (thyroid hormone) and retinol (vitamin A) and is synthesized predominantly by the liver. When the TTR protein misfolds, it can form amyloid fibrils that deposit in the heart causing heart failure, heart conduction block, or arrhythmia such as atrial fibrillation. The biological processes by which amyloid fibrils form are incompletely understood but are associated with aging and, in some patients, affected by inherited variants in the TTR genetic sequence. ATTR amyloidosis results from misfolded TTR protein deposition. ATTR can occur in association with normal TTR genetic sequence (wild-type ATTR) or with abnormal TTR genetic sequence (variant ATTR). Wild-type ATTR primarily manifests as cardiomyopathy while ATTR due to a genetic variant manifests as cardiomyopathy and/or polyneuropathy. Approximately 50 000 to 150 000 people in the US have heart failure due to ATTR amyloidosis. Without treatment, heart failure due to ATTR amyloidosis is associated with a median survival of approximately 5 years. More than 130 different inherited genetic variants in TTR exist. The most common genetic variant is Val122Ile (pV142I), an allele with an origin in West African countries, that is present in 3.4% of African American individuals in the US or approximately 1.5 million persons. The diagnosis can be made using serum free light chain assay and immunofixation electrophoresis to exclude light chain amyloidosis combined with cardiac nuclear scintigraphy to detect radiotracer uptake in a pattern consistent with amyloidosis. Loop diuretics, such as furosemide, torsemide, and bumetanide, are the primary treatment for fluid overload and symptomatic relief of patients with ATTR heart failure. An ATTR-directed therapy that inhibited misfolding of the TTR protein (tafamidis, a protein stabilizer), compared with placebo, reduced mortality from 42.9% to 29.5%, reduced hospitalizations from 0.7/year to 0.48/year, and was most effective when administered early in disease course. Conclusions and Relevance: ATTR amyloidosis causes cardiomyopathy in up to approximately 150 000 people in the US and tafamidis is the only currently approved therapy. Tafamidis slowed progression of ATTR amyloidosis and improved survival and prevented hospitalization, compared with placebo, in people with ATTR-associated cardiomyopathy.


Assuntos
Amiloidose , Cardiomiopatias , Insuficiência Cardíaca , Pré-Albumina , Humanos , Amiloidose/complicações , Amiloidose/epidemiologia , Amiloidose/genética , Amiloidose/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina , Pré-Albumina/genética , Pré-Albumina/metabolismo , Negro ou Afro-Americano/etnologia , Negro ou Afro-Americano/genética , Negro ou Afro-Americano/estatística & dados numéricos , Estados Unidos/epidemiologia , África Ocidental , Dobramento de Proteína
19.
Mol Biol Rep ; 51(1): 380, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429584

RESUMO

BACKGROUND: Interferon regulatory factor 6 (IRF6) has a key function in palate fusion during palatogenesis during embryonic development, and mutations in IRF6 cause orofacial clefting disorders. METHODS AND RESULTS: The in silico analysis of IRF6 is done to obtain leads for the domain boundaries and subsequently the sub-cloning of the N-terminal domain of IRF6 into the pGEX-2TK expression vector and successfully optimized the overexpression and purification of recombinant glutathione S-transferase-fused NTD-IRF6 protein under native conditions. After cleavage of the GST tag, NTD-IRF6 was subjected to protein folding studies employing Circular Dichroism and Intrinsic fluorescence spectroscopy at variable pH, temperature, and denaturant. CD studies showed predominantly alpha-helical content and the highest stability of NTD-IRF6 at pH 9.0. A comparison of native and renatured protein depicts loss in the secondary structural content. Intrinsic fluorescence and quenching studies have identified that tryptophan residues are majorly present in the buried areas of the protein and a small fraction was on or near the protein surface. Upon the protein unfolding with a higher concentration of denaturant urea, the peak of fluorescence intensity decreased and red shifted, confirming that tryptophan residues are majorly present in a more polar environment. While regulating IFNß gene expression during viral infection, the N-terminal domain binds to the promoter region of Virus Response Element-Interferon beta (VRE-IFNß). Along with the protein folding analysis, this study also aimed to identify the DNA-binding activity and determine the binding affinities of NTD-IRF6 with the VRE-IFNß promoter region. The protein-DNA interaction is specific as demonstrated by gel retardation assay and the kinetics of molecular interactions as quantified by Biolayer Interferometry showed a strong affinity with an affinity constant (KD) value of 7.96 × 10-10 M. CONCLUSION: NTD-IRF6 consists of a mix of α-helix and ß-sheets that show temperature-dependent cooperative unfolding between 40 °C and 55 °C. Urea-induced unfolding shows moderate tolerance to urea as the mid-transition concentration of urea (Cm) is 3.2 M. The tryptophan residues are majorly buried as depicted by fluorescence quenching studies. NTD-IRF6 has a specific and high affinity toward the promoter region of VRE-IFNß.


Assuntos
Fatores Reguladores de Interferon , Dobramento de Proteína , Triptofano , Humanos , DNA , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/fisiologia , Triptofano/metabolismo , Ureia
20.
Methods Mol Biol ; 2778: 1-30, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478268

RESUMO

ß-barrels are a class of membrane proteins made up of a cylindrical, anti-parallel ß-sheet with a hydrophobic exterior and a hydrophilic interior. The majority of proteins found in the outer membranes (OMs) of Gram-negative bacteria, mitochondria, and chloroplasts are ß-barrel outer membrane proteins (OMPs). ß-barrel OMPs have a diverse repertoire of functions, including nutrient transport, secretion, bacterial virulence, and enzymatic activity. Here, we discuss the broad functional classes of ß-barrel OMPs, how they are folded into the membrane, and the future of ß-barrel OMP research and its applications.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Mitocôndrias/metabolismo , Bactérias Gram-Negativas/metabolismo , Conformação Proteica em Folha beta , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...